
CS152: Computer Systems Architecture
Hands-On Processor Development

Sang-Woo Jun

2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Canonical Microprocessor Design Flow

RTL Design

Long Toolchain

“Tapeout”

Verilog, VHDL, lots of custom, in-house tools…

Details are way outside scope of cs152
Standard cell library from target foundry/technology is an input

GDSII/OASIS format sent to foundry,
receive first spin chip in a few months

Image source: Alinja, English Wikipedia

RTL (Register-Transfer-Level)

Image source: David Carron, English Wikipedia

Simulation

Logic gates

Layers of wires

Prototyping Using FPGAs

❑ Field-Programmable Gate Array

❑ A grid of “Configurable Logic Blocks” (CLB)
o Each CLB can be programmed to act like logic gates (stores truth table)

o A flexible on-chip network can act like wires

❑ Can be reconfigured in seconds

❑ CLBs and on-chip network emulating actual silicon
o Not as dense, not as fast

o Great for prototyping!

“Configurable logic block (CLB)”

Toolchains for FPGA development

❑ Typically vendor-specific
o Xilinx: Vivado, Vitis

o Intel/Altera: Quartus

o Lattice: Diamond

❑ Robust open-source projects
o Yosys, nextpnr, arachnepnr, icestorm, …

o Mostly centered around low-power Lattice FPGAs

o We will use this!

High-Level
Hardware-Description Languages

❑ Modern circuit design is aided heavily by Hardware-Description
Languages
o Relatively high-level description to compiler

o Toolchain performs “synthesis”, translating them into gates, also place, route, etc

o High-end chips require human intervention in each stage for optimization

❑ Wide spectrum of languages and tools
o Register-Transfer-Level (RTL) languages: Verilog, VHDL, …

• Registers (state), and combinational logic

o “High-Level Synthesis”: Uses familiar software programming languages
• C-to-gates, OpenCL, …

• Typically compiles to Verilog/VHDL

Efficient, difficult to program

Easy to program, inefficient

Bluespec System Verilog (BSV)

❑ “High-level HDL without performance compromise”

❑ Comprehensive type system and type-checking
o Types, enums, structs

❑ Static elaboration, parameterization (Kind of like C++ templates)
o Efficient code re-use

❑ Efficient functional simulator (bluesim)

❑ Most expertise transferrable between Verilog/Bluespec

In a comparison with a 1.5 million gate ASIC coded in Verilog, Bluespec demonstrated a 13x
reduction in source code, a 66% reduction in verification bugs, equivalent speed/area
performance, and additional design space exploration within time budgets.

-- PineStream consulting group

printf’s and user input during simulation!

Low-level control flow design

Not very intuitive… We will revisit with code later

Hands-On Processor Development

❑ We will experience the impact of ideas we cover
o Using synthesizable processor implementation in Bluespec

o Synthesized for an FPGA using open-source tools

❑ “How does this change effect the critical path?”

❑ “How does this change effect the cycle count?”

❑ “How does this change effect chip resource utilization?”

CPU Time = Instruction Count × CPI × Clock Cycle Time

Getting Started

❑ Virtual machine with all tools installed, available at:
o cs152-ubuntu.ova (4 GB!)

❑ First, install Oracle Virtualbox
o Open-source virtual machine

o High performance with minimal configuration

https://drive.google.com/file/d/1ia-u3XWJ08EQI6KZEykJhkEd4Htt2tAz/view?usp=sharing

Getting Started

❑ Import the downloaded VM

If core count/memory allowance needs changing

Getting started

Change core/memory assignment if necessary

Getting started

❑ You can work in the VM window, OR

❑ Connect to it via a terminal
o Putty, MobaXterm, OpenSSH, etc

❑ The VM forwards its
o port 22 (ssh) to

o 3022

o Connect to it by ssh cs152@127.0.0.1:3022

❑ Login: cs152/cs152

❑ Run ./clone-ulx3s.sh
Check it out!

mailto:cs152@127.0.0.1:3022

Trying simulation

❑ cs152-rv32i-bsv/projects/rv32i/

❑ Compiling and running the simulation
o “make bsim” – Stands for “bluesim”

o “make runsim” creates two files
• system.log : log of processor operation

• output.log : log of software output

❑ Default benchmark: Sudoku solver
o Source: sw/minisudoku.c

o Resulting assembly: sw/minisudoku.dump

o Binary for processor: sw/minisudoku.bin

RTL Design

Long Toolchain

Simulation

Example simulation execution
Cycle PC

From the simulation, we can measure the cycle count

…

system.log output.log

Question

Solution

Performance numbers!
IPC = 16,596 / 135,944 ~= 0.122

Trying synthesis

❑ Synthesis to hardware
o “make | tee build.log”

o Log file is long!

❑ Example log files from synthesis:
o Look for “Device utilisation” [sic]:

o Look for “Max frequency” :

o Look for “Critical path report for clock”:

Measuring the performance of our processor

❑ From the simulation, we can measure the clock cycles to completion

❑ From synthesis, we can measure the clock speed

❑ (cycle count)/(clock frequency) = time to completion!

❑ In our previous example, 135,944 cycles / 69.80 MHz = 0.0019s
o Is this good?

o We can do MUCH better!

CS152: Computer Systems Architecture
A Very Short Introduction to Bluespec

Sang-Woo Jun

2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Bluespec System Verilog (BSV) High-Level

❑ Everything organized into “Modules”
o Modules have an “interface” which other modules use to access state

o A Bluespec model is a single top-level module consisting of other modules, etc

❑ Modules consist of state (other modules) and behavior
o State: Registers, FIFOs, RAM, …

o Behavior: Rules, Interface

Module A

State

State

Rule

Rule

In
te

rf
ac

e

In
te

rf
ac

e

Interface Interface

Rule
State

StateState

Module B

Module C1 Module C2

Rule

Peek into a RISC-V processor in Bluespec

…

…

Processor.bsv Top.bsv

Greatest Common Divisor Example

❑ Euclid’s algorithm for computing the greatest common divisor (GCD)

15
9
3
6
3
0

6
6
6
3
3
3

X Y

subtract
subtract
swap
subtract
subtract

answer

State

Rules
(Behavior)

Interface
(Behavior)

Sub-modules
Module “mkReg” with interface “Reg”,
type parameter Bit#(32),
module parameter “0”*

*mkReg implementation sets initial value to “0”

outQ has a module parameter “2”*

*mkSizedFIFOF implementation sets FIFO size to 2

module mkGCD (GDCIfc);
Reg#(Bit#(32)) x <- mkReg(0);
Reg#(Bit#(32)) y <- mkReg(0);
FIFOF#(Bit#(32)) outQ <- mkSizedFIFOF(2);

rule step1 ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule step2 ((x <= y) && (y != 0));
y <= y-x;
if (y-x == 0) begin
outQ.enq(x);

end
endrule

method Action start(Bit#(32) a, Bit#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method ActionValue#(Bit#(32)) result();
outQ.deq;
return outQ.first;

endmethod
endmodule

State

Rules
(Behavior)

Interface
(Behavior)

Rules are atomic transactions
“fire” whenever condition (“guard”) is met

module mkGCD (GDCIfc);
Reg#(Bit#(32)) x <- mkReg(0);
Reg#(Bit#(32)) y <- mkReg(0);
FIFOF#(Bit#(32)) outQ <- mkSizedFIFOF(2);

rule step1 ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule step2 ((x <= y) && (y != 0));
y <= y-x;
if (y-x == 0) begin
outQ.enq(x);

end
endrule

method Action start(Bit#(32) a, Bit#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method ActionValue#(Bit#(32)) result();
outQ.deq;
return outQ.first;

endmethod
endmodule

module mkGCD (GDCIfc);
Reg#(Bit#(32)) x <- mkReg(0);
Reg#(Bit#(32)) y <- mkReg(0);
FIFOF#(Bit#(32)) outQ <- mkSizedFIFOF(2);

rule step1 ((x > y) && (y != 0));
x <= y; y <= x;

endrule
rule step2 ((x <= y) && (y != 0));
y <= y-x;
if (y-x == 0) begin
outQ.enq(x);

end
endrule

method Action start(Bit#(32) a, Bit#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method ActionValue#(Bit#(32)) result();
outQ.deq;
return outQ.first;

endmethod
endmodule

State

Rules
(Behavior)

Interface
(Behavior) Interface methods are also atomic transactions

Can be called only when guard is satisfied
When guard is not satisfied, rules that call it cannot fire

Bluespec Modules – Interface

❑ Modules encapsulates state and behavior (think C++/Java classes)

❑ Can be interacted from the outside using its “interface”
o Interface definition is separate from module definition

o Many module definitions can share the same interface: Interchangeable
implementations

❑ Interfaces can be parameterized
o Like C++ templates

o Not important right now

interface GDCIfc;
method Action start(Bit#(32) a, Bit#(32) b);
method ActionValue#(Bit#(32)) result();

endinterface

module mkGCD (GDCIfc);
…

method Action start(Bit#(32) a, Bit#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method ActionValue#(Bit#(32)) result();
outQ.deq;
return outQ.first;

endmethod
endmodule

“FIFO#(Bit#(32))”

Bluespec Module – Interface Methods

❑ Three types of methods
o Action : Takes input, modifies state

o Value : Returns value, does not modify state

o ActionValue : Returns value, modifies state

❑ Methods can have “guards”
o Does not allow execution unless guard is True

rule ruleA;
moduleA.actionMethod(a,b);
Int#(32) ret = moduleA.valueMethod(c,d,e);
Int#(32) ret2 <- moduleB.actionValueMethod(f,g);

endrule

Guard

method Action start(Bit#(32) a, Bit#(32) b) if (y==0);
x <= a; y <= b;

endmethod
method ActionValue#(Bit#(32)) result();

outQ.deq;
return outQ.first;

endmethod
Note the “<-” notation

Automatically introduces
“implicit guard”
if outQ is empty

Combinational circuits in Bluespec: Rules

❑ A Bluespec rule represents a state transfer via combinational circuits
o Much like Verilog “always” and VHDL “process”

o Can call methods of other modules
• e.g., outQ.enq – Introduces implicit guard if outQ is full

rule step2 ((x <= y) && (y != 0));
y <= y-x;
if (y-x == 0) begin
outQ.enq(x);

end
endrule

x

y

outQ
Combinational

Circuit

“enq” encapsulates
more combinational logic

Combinational circuits in Bluespec:
Functions

❑ Functions are combinational – do not allow state changes
o Can be defined within or outside module scope

o No state change allowed, only performs computation and returns value

// Function example
function Int#(32) square(Int#(32) val);

return val * val;
endfunction
rule rule1;

x <= square(12);
endrule

Combinational ALU implemented using a function

Bluespec Rules Are Atomic Transactions

❑ Only has access to state values from before rule began firing

❑ State update happens once as the result of rule firing
o e.g.,

// x == 0, y == 1
x <= y; y <= x; // x == 1, y == 0

o e.g.,
// x == 0, y == 1
x <= 1; x <= y; // write conflict error!

rule step2 ((x <= y) && (y != 0));
y <= y-x;
if (y-x == 0) begin
outQ.enq(x);

end
endrule

e.g.,

Fires if:
1. x<=y && y != 0 && y-x == 0 && outQ.notFull

or
2. x<=y && y != 0 && y-x != 0

Intuition: All statements in rule execute in parallel

Bluespec State – FIFO

❑ Fixed size queue

❑ Parameterized interface with guarded methods
o e.g., testQ.enq(data); // Action method. Blocks when full

testQ.deq; // Action method. Blocks when empty
dataType d = testQ.first; // Value method. Blocks when empty

❑ FIFOF adds two more methods
o testQ.notEmpty returns bool

o testQ.notFull returns bool

❑ Provided as library
o Needs “import FIFO::*;” at top

FIFOF#(Bit#(32)) testQ <- mkSizedFIFOF(2);
rule enqdata; // whole rule does not fire if testQ is full

if (x) y <= z;
testQ.enq(32’h0);

endrule

Bluespec rules:
State and temporary variables
❑ State: Defined outside rules, data stored across clock cycles

o All state updates happen atomically
o Reg#(…), FIFO#(…)
o Register state assignment uses “<=“

❑ Temporary variables: Defined within rules, data local to a rule execution
o Intuition: Rule-local variables
o Follows sequential semantics similar to software languages
o Temporary variable value assignment uses “=“

❑ Same syntax as Verilog/VHDL

❑ Temporary variables behave as you would expect

Bluespec rules:
State and temporary variables

Reg#(Bit#(32)) a <- mkReg(1); // State
Reg#(Bit#(32)) b <- mkReg(4); // State
rule rule_a;

Bit#(32) c = a+1; // Temporary variable c == 2
Bit#(32) d = (c + b)/2; // Temporary variable d == 3
a <= d; // State a == 3 after this cycle
b <= a+d; // State b == 4 after this cycle

endrule

Behavior of Bluespec Rules

❑ At every cycle, all rules that can fire, will fire
o All guards are satisfied

o No conflicts between rules

❑ Conflict between rules?
o Two rules updating same state (writing to same register, enq’ing to same FIFO)

• One rule enq’ing, one rule deq’ing is OK!

o When conflict, only one rule fires
• Typically the first one in the source file

CS152: Computer Systems Architecture
Dive Into The Example Processor

Sang-Woo Jun

2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Goal of these exercises

❑ Lots of details are lost when described at a high level
o E.g., What information is sent between execute and memory stages?

❑ Experience the performance impact of modifications
o Clock speed? Cycle count?

o Instruction count won’t change since we’re working with the same software binary

o Time = clock period * cycle count * instruction count

❑ I will guide you through pipelining, but not comment on performance
o See for yourself!

Fetch WritebackDecode Execute Memory

Hardware platform overview

❑ Lattice ECP5-85F FPGA

❑ Host software loads software/data over USB to FPGA

❑ Configured with limited on-chip memory
o 8 KB on-chip memory

• Arbitrary choice… Hardware can support much more

• Enough for sudoku!

Host

RV32I

8KB
Memory

USB

FPGA

Processor memory map

❑ Memory space divided into program and data
o 4 KB each

❑ Host software loads program and data

❑ And then starts processor

❑ No writes allowed in program space
o All writes to program are MMIO’d into software

o Simply printed to screen at host

Data

Program

Initial PC
(0 KB)

Initial sp
(8 KB)

4 KB

4 KB

Processor code structure

❑ cs152-rv32i-bsv/
o projects/

▪ rv32i/
• processor/ -- Bluespec files for processor (Pipeline, register file, etc)

• sw/ -- Software benchmarks (sudoku)

• cpp/ -- Host software

o src/ -- Helper modules (USB communication, memory module, etc)

<- You will work here

The big principle in hardware design

❑ EVERYTHING is parallel!

❑ All function calls, all rule executions, all method polls, …

❑ If there are 10,000 rules (~= ‘always’ blocks),
ideally 10,000 rules will all be executing EVERY cycle

Basic microarchitecture in Bluespec:
The interface

…

Outside environment polls this method for memory requests

Memory responses arrive in the processor

Processor

iMemReq iMemResp

Projects/rv32i/processor/Processor.bsv

dMemReq dMemResp

Everything outside the processor is provided

(Processor can enqueue memory requests into dmemReqQ)

Basic microarchitecture in Bluespec:
The interface

Projects/rv32i/processor/Processor.bsv

…

Register of type “Word” (32 bits)

Register file

FIFOs of Memory Req types and Word types
Default size is 2

Types are defined in processor/Defines.bsv

• Processor can make instruction and data memory
requests via imemReqQ and dmemReqQ

• Responses will arrive via imemRespQ and dmemRespQ

Basic microarchitecture in Bluespec:
The stages

❑ A 4-stage implementation is provided
o Execute and memory merged into Execute for simplicity

• Good idea?

o Expressed via four ‘rules’
• doFetch

• doDecode

• doExecute

• doWriteback

❑ Not yet pipelined: Goal of the labs!

Basic microarchitecture in Bluespec:
Rules express combinational logic

…

…
…

…
…

…

Only one rule can
fire at a time

The fetch stage

❑ Sends memory req via imemReqQ

❑ Enqs into pipeline FIFO f2d
o Same naming convention between other stages (f2d, d2e, e2m)

Fetch Decode

f2d

imemReqQ imemRespQ

IMPORTANT!
Rules express combinational circuits
Meaning there is no ordering between expressions!
(Unless there is dependency)

❑ “decode” function defined in processor/Decode.bsv
o Extracts bit-encoded information and expands it into an easy-to-use structure

❑ Let’s look at code! (Decode.bsv)

The decode stage

Combinational decode

The decode function

❑ Analyzes the 32-bit encoded instruction

❑ Returns a decoded instruction that is easier to use by the rest of the
processor

…

Encoded instructionDecoded instruction

The decode function – Example

❑ Add instruction: funct7 == 0 && funct3 == 0
o Dst, src1, src2 exists, Instruction type is “OP” (register-register operation)

o aluFunc is Add

o No imm, size

o Not branch instruction
(BEQ, BNE, etc)

R-Type encoding

The execute stage

❑ “exec” implements ALU operations (in processor/Execute.bsv)

Bluespec functions are combinational
circuits (No state changes)

non-pipelined version always sets pc for fetch

Take a look at processor/Execute.bsv!

The writeback stage

❑ Straightforward enough!
o Let’s look at code! And notice handling of signed/unsigned numbers

Aside: Looking back at the critical path

❑ Which stage is the critical path?
o Look at the synthesis log!

❑ Was it a good idea to merge execute and memory?

…

Looking at sample execution

❑ Try running “make runsim”

❑ “Mul” not part of rv32i!

output.log

Don’t mind this for now

Unsupported instruction
At 0x04a0

system.log

sw/minisudoku.dump

Question

Solution

Additional output
With Mul implemented

First task for lab 2: Implement “Mul”

❑ Hint: Must change “Decode.bsv” and “Execute.bsv”

❑ Decode.bsv:
o Opcode of Mul is “opOp” (Like “add” and others)

o Funct7 is 7'b0000001 (7 bit value of 1)

o Funct3 is 3’b000 (3 bit value of 0), already provided with name “fnMUL”

o “Mul” is already added to enum AluFunc

o Hint: Decoded results are very similar to, say, Add

❑ Execute.bsv
o Mul should have an “OP” iType, which is an ALU operation

o “function Word alu” in Execute should be changed to perform Mul

CS152: Computer Systems Architecture
Pipelining The Processor

Sang-Woo Jun

2023

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Let’s start pipelining

❑ Start with handling branch hazards
o Data hazards produce wrong results,

o but without handling branch hazards we cannot pipeline things at all
• e.g., Which address should Fetch read?

❑ Things to solve:
1. Branch hazard

2. Load-Use hazard

3. Read-After-Write hazard

Step 1: Simply remove guards

❑ Remove register “stage”, and all references to it (in all rules)

Leaving this would have created conflicts between rules
Resulting in mutually exclusive firing (NOT pipelined!)

Did that work?
system.log

Execution hangs before reaching end!

Same instruction loaded multiple times!

Why this particular behavior?

Hint: PC update currently done in exeucte

Step 2: Predict PC + 4

❑ Keep moving PC forward, predicting PC+4 every time

Added line to move PC forward

Did that work?

❑ Encounters unsupported instruction after two instructions!

Wrongly predicted jal will not branch
Should not have executed PC == 8!

We need mispredict handling

Step 3: Solve control hazards with epochs

❑ Remember: Each instruction tagged with an epoch value
o Once mispredict is detected at execute

1. Correct PC is sent to fetch

2. Epoch is updated

3. Future instructions arriving at execute marked with stale epoch are ignored

Step 3: Add epochs – Fetch

Q: Is a Boolean epoch enough?

Take new PC, update epoch

New prediction = pc + 4
Can change this for better prediction

Temporary variables can be updated within rule

f2d needs to be augmented with predicted_pc and epoch

Execute needs to discover:
1. If prediction is correct
2. If this is from a mispredicted path

Why ‘epoch’ as temporary
variable?

Step 3: Add epochs – Execute

Ignore if epoch is wrong

Update epoch, send new PC if prediction is wrong

Note: d2e also must be augmented with epoch
and predicted_pc

Did that work?

❑ Hangs…

Mem read from program memory!
The current system does not support
dmem read from instruction memory

Data hazard!

Step 4: Solving data hazards

❑ Part 1: Stalling
o How to detect data hazards?

o The decode stage must know whether a previous instruction incurs data hazard
• Previous instruction in flight will write to a register I need to read from?

o Restriction: Detection must happen combinationally, within the decode cycle
• Otherwise, we will slow down the pipeline

• Or, break down decode into multiple pipeline stages

❑ Part2: Forwarding
o To be continued

Detecting data hazards: Scoreboard

❑ Module which keeps track of destination registers
o Decode records the destination register index (if any)

o Writeback removes oldest destination

o Decode checks if any source registers exist in scoreboard, stall if so

❑ Interface of scoreboard:

Insert destination register number

Remove oldest target

Two search methods for checking
maximum of two input operands

Why do we need two separate methods?
Both searches need to happen in same cycle!

Decode stage for correct stalling

❑ Stall unless both input operands are not found in scoreboard
o if (!sb.search1(dInst.src1) && !sb.search2(dInst.src2)) begin

o f2d.deq and imemRespQ.deq should only be done when not stalling!

❑ When not stalling, insert destination register into scoreboard
o sb.enq(dInst.dst)

Writeback stage for correct stalling

❑ Writeback should remove the current instruction’s dst from scoreboard
o All instructions are in-order, so simply removing the oldest works

o call “sb.deq”

Fetch WritebackDecode Execute

Scoreboard

deqsearch1,search2enq

Does this work?

❑ Stalls forever… We are not deq’ing some things we enq’d!

…

Fetch WritebackDecode Execute

Scoreboard

deqsearch1,search2enq

We only deq sb in writeback!
Some instructions don’t reach writeback!
(doExecute doesn’t push into e2m)
• Epoch mismatch
• STORE instructions, …

Continuing Step 4: Data hazards

❑ Q: Do we put sb.deq in execute as well?
o No! sb has in-order semantics,

o if execute and writeback try to deq at the same time, incorrect behavior…

❑ All instructions arriving at doExecute should enq something into e2m
o Even if, say misprediction detected via epochs

o sb.deq only in doWriteback

o Should not wait for memory, should not write anything to rf

o isMem = False, dst = 0

Does this work?

❑ Yes! Finally correct results!

❑ How is performance? Can we do better? output.log

system.log

Things to solve

1. Branch hazard – Done!

2. Load-Use hazard – Stalling

3. Read-After-Write hazard – Stalling, Forwarding
• Pipeline is correct already, but now to improve performance!

Implementing forwarding

❑ Add a combinational forwarding path from execute to decode
o If the current cycle’s execute results can be used as one of inputs of decode, use

that value

❑ Regardless of whether scoreboard.search1/2 returns true or false,
If forward path has a source operand, we can use that value and not stall

Fetch WritebackDecode Execute

Register
File

Aside: Inter-rule
combinational communication in Bluespec

❑ So far, communication between rules have been via state
o Registers, FIFOs

o State updates only become visible at the next cycle!

o How do we make doExecute send bypass information to doDecode
combinationally?

❑ Solution: “Wires”
o Used just like Bluespec Registers, except data is available in the same clock cycle

o Data is not stored across clock cycles

o Many types, but easiest is “mkDWire”
• Provide a “default” value, which will be read if the wire is not written to within that cycle

32 bit wire with default value of 0xffffffff

Aside: Inter-rule
combinational communication in Bluespec

❑ Execute stage should provide two values
o Destination register index, and its new value

o Create a wire that can combinationally send
• Default value is for the zero register, since zero register value is always zero

In Decode

In Execute

How fast is it now?

Count stall cycles with: cat system.log | grep stalled | wc -l

❑ Add some debug output for counting stall cycles

Question: How much faster is it now? How many milliseconds?

Some more details of
current forwarding implementation

Fetch WritebackDecode Execute

Register
File

…
[0x00000005:0x0010] Decode stalled -- 5 0
[0x00000005:0x0008] Writeback writing 00001000 to 5
[0x00000006:0x0010] Decoding 0x0042a903
[0x00000006:0x000c] Writeback writing 00000001 to 9
[0x00000007:0x0018] Fetching instruction count 0x0006
[0x00000007:0x0010] Mem read from 0x00001004
[0x00000007:0x0010] Executing
[0x00000007:0x0014] Decode stalled -- 9 18
[0x00000008:0x0014] Decode stalled -- 9 18
…

0: 40000313 addi x6,x0,1024

4: 00001297 auipc x5,0x1

8: ffc28293 addi x5,x5,-4

c: 0002a483 lw x9,0(x5)

10: 0042a903 lw x18,4(x5)

14: 012489b3 add x19,x9,x18

18: 01332023 sw x19,0(x6)

1c: c0001073 unimp

Some microbenchmark

Load-use hazard must stall

Why did this stall?

Why did instruction 0x10 stall?

A more complete forwarding solution

❑ Writeback needs a forwarding path too!

❑ x5 is available from register file after
Writeback of addi
o An instruction dependent (lw) on x5 which

is in decode while addi is in Writeback must
stall

❑ If we add a second forwarding path, we
can remove a stall cycle
o Worth it? Maybe!

o Needs benchmarking!

Fetch WritebackDecode Execute

Register
File

0: 40000313 addi x6,x0,1024

4: 00001297 auipc x5,0x1

8: ffc28293 addi x5,x5,-4

c: 0002a483 lw x9,0(x5)

10: 0042a903 lw x18,4(x5)

14: 012489b3 add x19,x9,x18

18: 01332023 sw x19,0(x6)

1c: c0001073 unimp

Microbenchmark

2-cycle gap

The overall performance at this point

❑ If you have followed along to this point
o IPC ~= 0.25

o Clock speed…?

o Total time…?

o Were our decisions good ones?

❑ IPC is still not good!
o What is the reason? (Best guess is fine!) – Mispredicts? Data hazards?

o Will some of our later topics address this?

Which of our modifications had the biggest impact on clock speed?

	Slide 1: CS152: Computer Systems Architecture Hands-On Processor Development
	Slide 2: Canonical Microprocessor Design Flow
	Slide 3: Prototyping Using FPGAs
	Slide 4: Toolchains for FPGA development
	Slide 5: High-Level Hardware-Description Languages
	Slide 6: Bluespec System Verilog (BSV)
	Slide 7: Low-level control flow design
	Slide 8: Hands-On Processor Development
	Slide 9: Getting Started
	Slide 10: Getting Started
	Slide 11: Getting started
	Slide 12: Getting started
	Slide 13: Trying simulation
	Slide 14: Example simulation execution
	Slide 15: Trying synthesis
	Slide 16: Measuring the performance of our processor
	Slide 17: CS152: Computer Systems Architecture A Very Short Introduction to Bluespec
	Slide 18: Bluespec System Verilog (BSV) High-Level
	Slide 19: Peek into a RISC-V processor in Bluespec
	Slide 20: Greatest Common Divisor Example
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Bluespec Modules – Interface
	Slide 25: Bluespec Module – Interface Methods
	Slide 26: Combinational circuits in Bluespec: Rules
	Slide 27: Combinational circuits in Bluespec: Functions
	Slide 28: Bluespec Rules Are Atomic Transactions
	Slide 29: Bluespec State – FIFO
	Slide 30: Bluespec rules: State and temporary variables
	Slide 31: Bluespec rules: State and temporary variables
	Slide 32: Behavior of Bluespec Rules
	Slide 33: CS152: Computer Systems Architecture Dive Into The Example Processor
	Slide 34: Goal of these exercises
	Slide 35: Hardware platform overview
	Slide 36: Processor memory map
	Slide 37: Processor code structure
	Slide 38: The big principle in hardware design
	Slide 39: Basic microarchitecture in Bluespec: The interface
	Slide 40: Basic microarchitecture in Bluespec: The interface
	Slide 41: Basic microarchitecture in Bluespec: The stages
	Slide 42: Basic microarchitecture in Bluespec: Rules express combinational logic
	Slide 43: The fetch stage
	Slide 44: The decode stage
	Slide 45: The decode function
	Slide 46: The decode function – Example
	Slide 47: The execute stage
	Slide 48: The writeback stage
	Slide 49: Aside: Looking back at the critical path
	Slide 50: Looking at sample execution
	Slide 51: First task for lab 2: Implement “Mul”
	Slide 52: CS152: Computer Systems Architecture Pipelining The Processor
	Slide 53: Let’s start pipelining
	Slide 54: Step 1: Simply remove guards
	Slide 55: Did that work?
	Slide 56: Step 2: Predict PC + 4
	Slide 57: Did that work?
	Slide 58: Step 3: Solve control hazards with epochs
	Slide 59: Step 3: Add epochs – Fetch
	Slide 60: Step 3: Add epochs – Execute
	Slide 61: Did that work?
	Slide 62: Step 4: Solving data hazards
	Slide 63: Detecting data hazards: Scoreboard
	Slide 64: Decode stage for correct stalling
	Slide 65: Writeback stage for correct stalling
	Slide 66: Does this work?
	Slide 67: Continuing Step 4: Data hazards
	Slide 68: Does this work?
	Slide 69: Things to solve
	Slide 70: Implementing forwarding
	Slide 71: Aside: Inter-rule combinational communication in Bluespec
	Slide 72: Aside: Inter-rule combinational communication in Bluespec
	Slide 73: How fast is it now?
	Slide 74: Some more details of current forwarding implementation
	Slide 75: A more complete forwarding solution
	Slide 76: The overall performance at this point

